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Abstract

Threshold Blind Signatures are useful for federated e-cash [1] and voting [2] schemes,
making these potentially more robust and secure. Both blind BLS signatures and
threshold BLS signatures were described by Boldyreva [3] but no combination of these
two aspects was formally analyzed so far. We describe a threshold blind signature scheme
built from Boldyreva’s blind and threshold schemes and prove it secure under the One
More co-Computational Diffie-Hellman assumption in the random oracle model.
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1. Introduction

Blind signature protocols allow a user to acquire a signature on a message without
revealing the message to the signer and are a key building block for privacy preserving
applications. They were originally invented by Chaum to construct an e-cash scheme [1]
but later other schemes based on blind signatures like electronic voting [2] were invented.

It might be unituitive why a signer would sign a message without knowing it, so we
will shortly explain the basic idea behind Chaumian e-cash. Let there be a bank with a
signing key. Each signature with this key is worth 1$. To acquire e-cash tokens a user
sends x$ to the bank and draws x random tokens t1, . . . , tx. The bank will then engage
in x rounds of the blind signature scheme resulting in the user receiving signatures σi
for all ti. Each pair (ti, σi) is now worth 1$ and can be redeemed at the bank. Since
the bank does not learn ti during the signing protocol the issuance and redemption are
unlinkable and the signed tokens are thus anonymous.

One apparent problem with such a scheme is the bank being a single point of failure.
Both its integrity and availability can be easily attacked by attacking one site or entity.
Moreover the bank itself could easily “print” more tokens than it has collateral and
become fractional reserve. The blind nature of the signatures makes audits much harder.

In such a high stakes setting it is desirable to split the trust among multiple sites or even
entities to increase robustness and reduce the required trust. To do so a (t, n)-threshold
blind signature scheme is required, meaning that any t of n signers can together create a
signature but not t− 1 or fewer.

Multiple threshold blind signature schemes are described in the literature, but none are
optimal for said use case. Early schemes are based on the discrete logarithm assumption
[4, 5] or RSA [6], but lack a proper security model or are known to be insecure under
strong adversary models. Kim et al.’s scheme [5] is based on Okamoto-Schnorr blind
signatures, which are only secure for less than log(λ) parallel executions [7]. There also
exist pairing based schemes [8, 9], but these are not optimized for real-world use cases. Vo
et al. [8] base their scheme on a threshold scheme described by Boldyreva [3]. Boldyreva
also describes a blind signature scheme, but no threshold blind signature scheme.

1.1. Contribution

We construct a pairing-based threshold blind signature scheme from Boldyreva’s schemes
[3]. Our scheme is similar to that by Vo, Zhang and Kim [8] but uses a slightly different
and more efficient way of blinding messages and is proven secure for more practical
pairings, which enables easy implementation using widespread pairing curves like BLS12-
381. We prove our scheme T BS-BLS secure under the One More co-Computational
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1. Introduction

Diffie-Hellman assumption in the Random Oracle Model. We also include more detailed
proofs for Boldyreva’s threshold signature scheme.

1.2. Structure

The paper is structured as follows: section 2.1 defines custom notation used throughout
the paper, section 2.2 introduces pairings and cryptographic assumptions about these,
the following sections of chapter 2 are dedicated to security definitions of threshold
signature schemes (section 2.6) and threshold blind signature schemes (section 2.7).
Section 2.8 describes one possible protocol instantiation of a threshold blind signature
scheme following the definition from section 2.7. Chapter 3 recounts the threshold
signature scheme by Boldyreva [3] and proves it secure. Chapter 4 describes our threshold
blind signature scheme and proves it secure. Chapter 5 points out further research topics
arising from our work.
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2. Preliminaries

2.1. Notation

Throughout the paper we use the following custom notation:

[f(·)]: the support [f(·)] of algorithm or protocol f(·) is defined as the set of possible
outputs of f : [f(·)] = {x | P [f(·) = x] > 0}

take(t, S): choose any S′ ⊆ S such that |S′| = t. Any, possibly random, subset may be
chosen.

x←$X: choose an element x ∈ X uniformly at random.

When referring to indexed variables like σi we assume that the value is actually tagged
with the index i and said tag is accessible. This means σi can be thought of as a pair
(i, σi), making i accessible to the algorithms working with σi. While this is a non-standard
notation we do this to improve readability.

Some of the adversaries defined in this paper are interactive and consist of multiple
sub-algorithms A = (A1, . . . ,An). These are assumed to be stateful, i.e. any Ai has
access to all inputs and internal state of Aj for all j ≤ i.

2.2. Cryptographic Assumptions

For the rest of this paper, we will assume G1, G2 and GT to be additive cyclic groups of
prime order q and G1 ∈ G1 and G2 ∈ G2 fixed generators of these.

Definition 1 (Pairing). A pairing e : G1 × G2 → GT is a function with the following
properties:

• Let E1 ∈ G1 and E2 ∈ G2 be group elements, then for any scalars a and b the
following holds: e(a · E1, b · E2) = a · b · e(E1, E2).

• e is not degenerate, meaning that e(G1, G2) outputs a generator of GT .

• e is efficiently computeable.

Definition 2 (coCDH [10]). The co-computational Diffie-Hellman (coCDH) problem
is hard for a group pair (G1,G2) if for every polynomial time adversary A, to which a
isomorphism oracle ϕ : G2 → G1 is given, the following holds true:

Pr[Aϕ(G2, aG2, H) = aH | a←$Zq;H←$G1] = negl(λ)
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2. Preliminaries

We note that we will need the isomorphism oracle ϕ only for security proofs and not
schemes themselves. For the most desirable type of pairings (type 3) [11] we assume that
there is no efficient way of calculating ϕ, but many schemes, including BLS [12], are not
known to be provable secure without the reduction having access to ϕ. So we will assume
such an oracle in our reductions as well.

Definition 3 (coDH tuple). A co-Diffie-Hellman tuple is a triple (A ∈ G1, B ∈ G2, C ∈ G1)
such that e(A,B) = e(C,G2).

A generalization of coCDH is the One More co-Computational Diffie-Hellman problem
(OMcoCDH), which allows the adversary more choice over the target elements for which
to solve the coCDH problem. We use the game OMcoCDH

ϕ
A(1λ) (fig. 2.1) to formally define

OMcoCDH. Informally the game proceeds as follows:

• A challenger chooses a random scalar x ∈ Zq and calculates X = x ·G2.

• The adversary A is given:

– The group element X ∈ G2.

– A target oracle OT, which returns random elements of G1 and keeps track of
them.

– A coCDH oracle ODH, which returns a solution Z = x ·Y to the computational
co-DH problem for X and any other group element Y ∈ G1, such that (X,Y, Z)
is a valid co-Diffie-Hellman tuple. The oracle counts its invocations in qDH.

– An isomorphism oracle ϕ : G2 → G1 just like for coCDH.

• A returns a set DH of tuples (Yi, Zi) that form valid co-Diffie-Hellman tuples with
X. A wins if |DH | > qDH and all Yi were generated by the target oracle OT.

Definition 4 (OMcoCDH [13]1). We call the One More co-Computational Diffie Hellman
(OMcoCDH) problem hard on a group if there exists no polynomial time adversary A
that is able to win game OMcoCDH

ϕ
A(1λ) (fig. 2.1) with more than negligible probability.

2.3. Signature Schemes

A signature scheme S = (Keygen, Sign, Verify) is a tuple of three algorithms:

(sk , pk)← Keygen(1λ): An algorithm that takes a security parameter as input and creates
a new private/public key pair (sk , pk)

σ ← Sign(sk ,m): An algorithm that takes a message m and a private key sk as arguments
and returns a signature σ

1It is called OMcoGDH by Jarecki et al. [13] but we note that the two assumptions are essentially the
same on the type of pairing we are working with.
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2. Preliminaries

OMcoCDH
ϕ
A(1λ)

x←$Zq
X := x ·G2

DH := AOT,ODH,ϕ(X)

return |DH | > qDH ∧ ∀ (Y,Z) ∈ DH : Y ∈ T ∧ x · Y = Z

OT()

Y ←$G1
T := T ∪ {Y }
return Y

ODH(Y )

qDH := qDH + 1

return x · Y

Figure 2.1.: Game OMcoCDH
ϕ
A(1λ) used to define OMcoCDH. Note that the isomorphism oracle ϕ : G2 →

G1 given to OMcoCDH
ϕ
A(1λ) is forwarded to A.

EUF-CMASA(1λ)

(sk , pk) := S.Keygen(1λ)

(m,σ) := AOsig(pk)

return m 6∈MOsig
∧ S.Verify(pk ,m, σ) = 1

Osig(m)

MOsig := MOsig ∪ {m}
return S.Sign(sk ,m)

Figure 2.2.: Game EUF-CMASA(1λ) used to define EUF-CMA.

{0, 1} ← Verify(pk ,m, σ): A deterministic algorithm to verify that a signature σ is valid
for a given message m and public key pk

We consider S a secure signature scheme if it is both correct and unforgeable.

Definition 5 (Correctness). A signature scheme S is called correct if the following holds
true:

∀ m ∈ {0, 1}∗, (sk , pk) ∈ [S.Keygen(1λ)] : S.Verify(pk ,m,S.Sign(sk ,m)) = 1

To formally model unforgeability we use the security notion of existential unforgeability
under chosen message attack (EUF-CMA). This means that an attacker can request
signatures for arbitrary messages but shall not be able to produce a new message-signature
pair.

Definition 6 (EUF-CMA). A signature scheme S is called existentially unforgeable
under chosen message attack (EUF-CMA) if there exists no polynomial time adversary
A that can win game EUF-CMASA(1λ) (fig. 2.2) with more than negligible probability.

2.4. BLS Signature Scheme

Boneh et al. [12] describe a signature scheme BLS = (Keygen, Sign, Verify) (fig. 2.3)
based on the coCDH problem on pairing groups.
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BLS.Keygen(1λ)

x←$Zq
return (x, x ·G2)

BLS.Sign(x,m)

σ := x ·H1(m)

return σ

BLS.Verify(P,m, σ)

// Verify that (P,m, σ) is a valid DH tuple

return σ ∈ G1 ∧ e(H1(m), P ) = e(σ,G2)

Figure 2.3.: The BLS signature scheme algorithms.

A signature σ is a group element of G1 that forms a valid coDH-tuple with the public
key P = x ·G2 and the message hashed to group G1 using H1(·). Clearly such a tuple is
easy to construct with knowledge of the secret x, but hard otherwise if coCDH problem is
hard for the group pair (G1,G2). The concrete algorithms of BLS are defined as follows:

(x, P )← Keygen(1λ): A private key x←$Zq is chosen at random. The public key P =
x ·G2 can be derived by multiplying it with the generator G2.

σ ← Sign(x,m): Signing consists of hashing the message to the first curve of the pairing
and multiplying the result with the private key to create the signature σ = x ·
H1(m) ∈ G1.

{0, 1} ← Verify(P,m, σ): Verifying is done by checking that σ ∈ G1 and that the public
key P , the hash of the message H1(m) and the signature σ form a valid coDH
tuple.

Note that we assume the public key to be valid, i.e. P ∈ G2, which we expect to be
ensured externally (e.g. on key exchange).

The scheme is proven existentially unforgeable under chosen message attack (EUF-
CMA) by Boneh et al. [12] under the coCDH assumption.

Shacham [14] also proves uniqueness of BLS signatures.

Lemma 1 (BLS uniqueness [14]). For every message m and public key P there exists
exactly one valid BLS signature σ.

2.5. Secret Sharing

We call (x1, . . . , xn)
t−→ x a (t, n)-secret sharing of x if there is an efficient algorithm

Interpolate to calculate x from any S ⊆ {x1, . . . , xn} with |S| = t but doing so with
any S with t− 1 or less elements is intractable.

One well-known such scheme is Shamir secret sharing [15]. It is defined through a
random polynomial f(x) = a0 + a1 · x+ . . . at−1 · xt−1 over a finite field where the shared
secret is the first coefficient a0 = f(0). The shares are defined as the evaluation of f
such that xi = f(i). This allows to recover f from any t shares by interpolating the
polynomial using Lagrange’s method. In fig. 2.4 we describe the interpolation of a single
value at place x̂, reconstructed from t points on the polynomial using Lagrange’s method.

The shared secret x can be recovered by interpolating at place x̂ = 0. By interpolating
the value at any other x̂ the result is the share x̂ of the secret.
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2. Preliminaries

Interpolate({(x1, y1), . . . , (xt, yt)}, x̂)

return
∑

i∈{1,...,t}

γi(x̂, x1, . . . , xt) · yi

γi(x̂, x1, . . . , xt)

return
∏

k∈{1,...,t}
k 6=i

x̂− xk
xi − xk

Figure 2.4.: Shamir secret sharing interpolation algorithm that interpolates place x of the polynomial
defined by t shares using Lagrange’s method. γi is the Lagrange coefficient.

Note that the shared secret x itself can be used as a point on the polynomial as (0, x)
when interpolating.

2.6. Threshold Signature Schemes

A (t, n)-threshold signature scheme2 T S = (Keygen, Sign, ShareVer, Combine, Verify)
allows the generation of signatures by cooperation of any t out of n signers.

(sk1, . . . , skn, pk1, . . . , pkn, pk)← Keygen(1λ, t, n): An algorithm run by a trusted dealer
that takes a security parameter 1λ, a threshold t and a total number of signers n
as arguments and generates the signers’ secret key shares, public key shares and
the aggregate public key. We also assume n and t to be implicitly available to all
other algorithms.

σi ← Sign(sk i,m): An algorithm run by every signer i that takes the private key share
sk i and message m as arguments and outputs a signature share σi.

{0, 1} ← ShareVer(pk i,m, σi): An algorithm to verify that a given signature share is
valid for message m under the corresponding public key share pk i.

σ ← Combine(Σ): An algorithm that takes a set Σ ⊆ {σi | i ∈ {1, . . . , n}} with |Σ′| ≥ t
of valid signature shares and outputs a signature σ.

{0, 1} ← Verify(pk ,m, σ): An algorithm to verify that a signature σ is valid for a given
message m and public key pk .

In an implementation the trusted dealer may be replaced by a distributed key generation
protocol (DKG), one such protocol is described in appendix C.

In our description of the scheme we use the concept of signing sessions. Each session
signs exactly one message and every signer will receive the same message as input in
one session. That means that T S.Sign has to be called with the same m by all honest
signers in one session.

This has to be guaranteed externally, e.g. by a reliable broadcast or other byzantine
fault tolerant (BFT) [16] consensus protocol as shown in section 2.8. The notion of

2We only consider schemes which create signature shares that can later be combined by any party.
There may exist others that cannot be modeled this way but are not relevant to this work.
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sessions is very useful for e.g. e-cash applications where, to start such a session, money
has to be sent. If a proof of having sent money could be used to acquire signature shares
for different messages that would lead to an attack described in appendix A. We note
that a threshold e-cash scheme would be most likely built with a BFT consensus protocol
anyway, which would allow agreeing on one message per session at little additional cost.

In the context of a threshold signature scheme we need to re-define unforgeability.
Instead of forging a signature at all being impossible for an adversary, this now has to
hold for an adversary that controls up to t− 1 signers. We define (t, n)-EUF-CMA to
describe this notion of threshold unforgeability.

We use game (t, n)-EUF-CMAT SA (1λ, t, n) to define (t, n)-EUF-CMA, it proceeds as
follows:

1. The challenger generates the private key shares sk1, . . . , skn, the corresponding
public key shares pk1, . . . , pkn and the public key pk using T S.Keygen.

2. A is given the first t−1 secret keys3 sk1, . . . , sk t−1, all public key shares pk1, . . . , pkn
and the aggregate public key pk . A also has access to a signature oracle Osig which
generates the signature shares of all honest parties for a particular message and
saves all signed messages in set Msig.

A runs up to qs signing sessions through Osig which records all signed messages in
Msig. The oracle takes a message m and returns the signature shares of all honest
parties.

3. A wins if it can present a valid signature for a message not in Msig.

The oracle Osig takes one message and returns signature shares for all honest parties.
This is a strong requirement but it is justifies by our intended application in federated
(e-cash) settings where there most likely already is a consensus algorithm which can be
used to ensure that. If the requirement of all signers signing the same message during
one session was not met an attack described in appendix A would be possible A protocol
ensuring this requirement is described in section 2.8.

It also appears as if the oracle returning all honest signers’ signature shares implies
the requirement of all signers being online in a real implementation for unforgeability
to hold. This is not the case. Giving A all signature share merely makes it stronger. It
could always simulate less signers being online by dropping signature shares. Thus this
game is without loss of generality equivalent to one where the adversary can choose from
which honest party to acquire the signature shares.

Definition 7 ((t, n)-EUF-CMA). We call a threshold signature scheme T S (t, n)-
existentially unforgeable under chosen message attack ((t,n)-EUF-CMA) if there exists
no polynomial time adversary A that can win game (t, n)-EUF-CMAT SA (1λ) (fig. 2.5) with
more than negligible probability.

3We note that for the schemes we will consider this is without loss of generality and equivalent to A
being allowed to choose up to t− 1 signers to compromise.
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(t, n)-EUF-CMAT SA (1λ)

(sk1, . . . , skn, pk1, . . . , pkn, pk) := T S.Keygen(1λ, t, n)

(m,σ) := AOsig(pk , pk1, . . . , pkn, sk1, . . . , sk t−1)

return m 6∈Msig ∧ T S.Verify(P,m, σ) = 1

Osig(m)

Msig := Msig ∪ {m}
return {T S.Sign(xi,m) | i ∈ {t, . . . , n}}

Figure 2.5.: Game (t, n)-EUF-CMAT SA (1λ) used to define (t, n)-EUF-CMA.

The security of T S is not only dependent on its unforgeability, but also its robustness.
Robustness describes the ability of a scheme to function in the presence of malicious
parties. Since multiple, potentially malicious, parties need to cooperate to create a
threshold signature it is an essential property for such a scheme. We use the notion of
(t, n)-robustness to describe robustness in the presence of t malicious parties out of n.

We use game (t, n)-robustnessAT S(pk , pk1, . . . , pkn, sk1, . . . , skn) (fig. 2.6) to define
(t, n)-robustness for T S, it proceeds as follows:

1. A is given the secret key shares sk1, . . . , sk t−1, all public key shares pk1, . . . , pkn
and the aggregate public key pk . It also has access to a signing oracle Osig.

A chooses a message m ∈ {0, 1}∗ and produces up to t − 1 signature shares
ΣA ⊆ {σi | i ∈ {1, . . . , t− 1}}. Both m and ΣA are returned.

2. The honest signers’ signature shares ΣC = {Sign(sk i,m) | i ∈ {t, . . . , n}} are
computed by the challenger. A’s signature shares are filtered to receive Σval

A =
{σi | σi ∈ ΣA : ShareVer(pk ,m, σi)}. These are then combined to one signature
σ = Combine(Σval

A ∪ ΣC).

3. The game returns Verify(pk ,m, σ) = 0. A wins if the verification fails and the
game returns 1.

Definition 8 ((t, n)-robustness T S). We call a threshold signature scheme T S (t, n)-
robust if P [(t, n)-robustnessAT S(pk , pk1, . . . , pkn, sk1, . . . , skn) = 1] is negligible for all
polynomial time adversaries A and all possible key sets (sk1, . . . , skn, pk1, . . . , pkn, pk) ∈
[T S.Keygen(1λ, t, n)].

We note that unforgeability and robustness are in conflict with each other. While
(t, n)-EUF-CMA is (informally speaking) more secure for larger t because it can tolerate
more adversarial peers, robustness can only be achieved up to a certain point, namely as
long as t < n/2. For larger t there would simply not be enough honest signers to combine
the shares without breaking (t, n)-EUF-CMA, which states that at least t shares are
needed.
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(t, n)-robustnessAT S(pk , pk1, . . . , pkn, sk1, . . . , skn)

(m,ΣA) := AOsig(pk , pk1, . . . , pkn, sk1, . . . , sk t)

if |ΣA| > t− 1 ∨ ∃ σi ∈ ΣA : i ∈ {t, . . . , n} then

return 0

endif

ΣC := {T S.Sign(sk i,m) | i ∈ {t, . . . , n}}
Σver
A := {σi | σi ∈ ΣA : ShareVer(pk ,m, σi)}

σ := T S.Combine(Σver
A ∪ ΣC)

return T S.Verify(pk ,m, σ) = 0

Figure 2.6.: Game (t, n)-robustnessAT S used to define (t, n)-robustness for T S schemes. Oracle Osig is
defined as in fig. 2.5.

2.7. Threshold Blind Signature Schemes

A threshold blind signature scheme T BS = (Keygen, Blind, Sign, ShareVer, Combine,
Unblind, Verify) allows a user U to acquire a blind signature for a message m ∈ {0, 1}∗
from a group of n signers as long as t of these are honest.

(sk1, . . . , skn, pk1, . . . , pkn, pk)← Keygen(1λ, t, n): An algorithm that generates the se-
cret key shares for all signers, the corresponding public key shares pk1, . . . , pkn and
the aggregate public key pk . We assume n and t to be implicitly available to all
other algorithms.

(m′, β)← Blind(m): An algorithm run by the user U that takes a message m as an
argument and produces a corresponding blinded message m′ and a blinding key β.
The blinded message m′ is handed to the signers while β is kept for later unblinding
of the signature.

σ′i ← Sign(sk i,m
′): An algorithm run by each signer i to create a blind signature share

σ′i for blinded message m′ using the private key share sk i.

{0, 1} ← ShareVer(pk i,m
′, σ′i): An algorithm to verify that a given blind signature share

σ′i is valid for the blinded message m′ under the respective public key share pk i.

σ′ ← Combine(Σ′): An algorithm that takes a set of valid blind signature shares Σ′ ⊆
{σ′i | i ∈ {1, . . . , n}} with |Σ′| ≥ t and outputs a combined blind signature σ′.

σ ← Unblind(σ′, β, pk): An algorithm run by U that takes a blinded signature σ′, a
blinding key β and a public key pk and unblinds the blind signature σ′ to obtain σ.

{0, 1} ← Verify(pk ,m, σ): An algorithm to verify that a signature σ is valid for a given
message m and public key pk .

There are three security goals for a threshold blind signature scheme: unforgeability,
robustness and blindness. We adapt the unforgeability and blindness definition from
Kuchta et al. [17].
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(t, n)-OMF-CMAT BSA (1λ)

(sk1, . . . , skn, pk1, . . . , pkn, pk) := T BS.Keygeni(1
λ, n, t)

{(m1, σ1), . . . , (ms, σs)} := AObsig(1λ, pk , pk1, . . . , pkn, sk1, . . . , sk t−1)

return s = qs + 1 ∧ ∀i, j where i 6= j : (mi, σi) 6= (mj , σj)

∧ ∀ i ∈ {1, . . . , s} : T BS.Verify(pk ,mi, σi) = 1

Obsig(m′)

qs := qs + 1

return {T BS.Sign(sk i,m
′) | i ∈ {t, . . . , n}}

Figure 2.7.: Game (t, n)-OMF-CMAT BSA (1λ) used to define (t, n)-OMF-CMA.

To define unforgeability in the blind threshold setting, we cannot use (t, n)-EUF-CMA
anymore since the messages that are being signed are unknown to the signers, so that
there cannot be a notion of the honest parties having signed a certain message. Instead
we use the threshold version of one more forgery under chosen message attack ((t, n)-
OMF-CMA). This means that an attacker controlling up to t− 1 out of n signers cannot
produce more signatures than they started signing sessions for.

We use game (t, n)-OMF-CMAT BSA (1λ) (fig. 2.7) to define (t, n)-OMF-CMA, which pro-
ceeds as follows:

1. The keys (sk1, . . . , skn, pk1, . . . , pkn, pk) = T BS.Keygen(1λ, t, n) are generated by
the challenger.

2. A is given the first t − 1 secret key shares sk1, . . . , sk t−1, all public key shares
pk1, . . . , pkn and the aggregate public key pk .

It also has access to the blind signature oracle Obsig, which generates all blind
signature shares σ′i from all honest signers i ∈ {t, . . . , n} for one blind message m′.
The oracle invocations are counted as qs. See section 2.6 for why this oracle is
appropriate in our setting.

3. A returns s distinct message-signature pairs and wins if all of them are valid for
public key pk and s > qs.

Definition 9 ((t, n)-OMF-CMA). A threshold signature scheme T BS is called (t, n)-one
more forgery under chosen message attack ((t, n)-OMF-CMA) secure if there exists no
polynomial time adversary A that can win (t, n)-OMF-CMAT BSA (1λ) (fig. 2.7) with more
than negligible probability.

Robustness is defined similarly to T S, but needs to take into account blinding and
unblinding. The game (t, n)-robustnessAT BS(pk , pk1, . . . , pkn, sk1, . . . , skn) (fig. 2.8) used
to define (t, n)−robustness works as follows:
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(t, n)-robustnessAT BS(pk , pk1, . . . , pkn, sk1, . . . , skn)

m := AObsig
msg (pk , pk1, . . . , pkn, sk1, . . . , sk t−1)

(m′, β) := T BS.Blind(m)

Σ′A := AObsig

sig (m′)

if |Σ′A| > t− 1 ∨ ∃ σi ∈ ΣA : i ∈ {t, . . . , n} then

return 0

endif

Σ′C := {T BS.Sign(sk i,m
′) | i ∈ {t, . . . , n}}

Σval
A := {σ′i | σ′i ∈ Σ′A : T BS.ShareVer(pk i,m

′, σ′i)}
σ′ := T BS.Combine(Σval

A ∪ Σ′C)

σ := T BS.Unblind(σ′, β, pk)

return T BS.Verify(pk ,m, σ) = 0

Figure 2.8.: Game (t, n)-robustnessAT BS used to define (t, n)-robustness for T BS schemes. Adversary
A = (Amsg,Asig) consists of two sub-algorithms: Amsg which chooses a message to sign
and Asig which may contribute up to t blind signature shares.

1. The adversary A is given the public key pk , the public key shares pk1, . . . , pkn and
the private key shares sk1, . . . , sk t−1 and outputs a message m to be signed. A also
has access to a blind signing oracle Obsig as defined in fig. 2.7.

2. The challenger blinds m to m′.

3. A is then given m′ and produces up to t− 1 blind signature shares Σ′A ⊆ {σ′i | i ∈
{1, . . . , t− 1}}.

4. The challenger calculates the blind signature shares of the honest signers Σ′C =
{Sign(sk i,m

′) | i ∈ {t, . . . , n}} and filters A’s shares into the set of valid shares
Σval
A := {σ′i | σ′i ∈ Σ′A : ShareVer(pk i,m

′, σ′i)}. These are then combined to one
blind signature σ′ = Combine(Σval

A ∪ Σ′C) which is then unblinded to receive σ.

5. The game returns whether Verify(pk ,m, σ) = 0. A wins if the verification fails
and returns 0.

Definition 10 ((t, n)-robustness T BS). We call a scheme T BS (t, n)-robust if the
probability P [(t, n)-robustnessAT BS(pk , pk1, . . . , pkn, sk1, . . . , skn) = 1] is negligible for
all polynomial time adversaries A and all key sets (sk1, . . . , skn, pk1, . . . , pkn, pk) ∈
[T BS.Keygen(1λ, t, n)].

A threshold blind signature scheme is information-theoretically blind if an attacker, no
matter how computationally strong, cannot correlate any signature-message pair with
the signing session through which it was crated.

We use game BlindnessT BSA (1λ) (fig. 2.9) to define blindness, informally it proceeds
as follows:
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1. Adversary A chooses two messages m0,m1 ∈ {0, 1}∗ and an aggregate public key
pk with which it will blind sign later.

2. The challenger, taking the position of a user requesting a signature, blinds both
messages to receive m′0 and m′1. It then draws a uniformly random bit b←$ {0, 1},
which will determine the order in which the blind signing will happen.

3. The adversary is given both blinded messages in the random order defined by b
and returns the two corresponding blind signatures (σ′b, σ

′
1−b) = Absig(m′b,m

′
1−b).

After unblinding both received signatures the challenger has to verify these. A can
only win if both signatures were correct.

4. A is now given both unblinded signatures in a known order and is tasked with
guessing in which order these were signed by itself. A wins if it guesses correctly.

Note how A could trivially win if the challenger would not verify the signatures. A
could generate a valid signature in the first signing round and an invalid one in the second.
Being handed both signatures in order would allow to distinguish both signing rounds.

Definition 11 (Perfect Blindness). We call a threshold blind signature scheme perfectly
blind if there exists no adversary A (not even a computationally unlimited one) that can
win the game BlindnessT BSA (1λ) (fig. 2.9) with a probability higher than 1/2.

2.8. Protocol Instantiation

So far we described the signature schemes and security games in terms of algorithms.
To actually implement such a scheme it is important to consider the communication
of algorithm in- and outputs between the participants. In this section we describe an
exemplary protocol.

We assume that all signers 1, . . . , n are connected by reliable and authenticated point-
to-point connections. The communication via these is written as

send(r,m): reliably send message m to recipient r.

receive(): receive a messages from a peer sent during the last round.

Furthermore we assume a reliable broadcast protocol as defined by Bracha [18]. It
guarantees the delivery of the same message to all honest recipients. We furthermore
assume the messages to be authenticated. The reliable broadcast can be used to prevent
equivocation as required by the discussed schemes. The unforgeability games implicitly
make the assumption that every honest signer sees the same message due to the signing
oracle’s design as explained in section 2.6.

broadcast(m): reliably broadcast the same message m to participants 1, . . . , n.

receive bc(): receive a broadcast message from a peer sent during last round.
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BlindnessT BSA (1λ)

(pk ,m0,m1) := Amsg(1λ)

(m′0, β0) = T BS.Blind(m0)

(m′1, β1) = T BS.Blind(m1)

// Run blind signing protocol in random order

b←$ {0, 1}
(σ′b, σ

′
1−b) := Absig(m′b,m

′
1−b)

σ0 := T BS.Unblind(σ′0, β0, pk)

σ1 := T BS.Unblind(σ′1, β1, pk)

v0 := T BS.Verify(pk ,m0, σ0)

v1 := T BS.Verify(pk ,m1, σ1)

// Guess order in which the messages were signed

return v0 ∧ v1 ∧ (b = Aguess(σ0, σ1))

Figure 2.9.: Game BlindnessT BSA (1λ) used to define blindness. Adversary A = (Amsg,Absig,Aguess)
consists of three sub-algorithms: Amsg which generates the adversary’s keys, returning
public key pk and chooses two messages m0,m1 ∈ {0, 1}∗ that will later be blind signed,
Absig which is given two blinded messages and produces two blind signatures for the
messages (in the same order) and Aguess which has to guess in which order the messages
were signed after participating in signing. Note how A controls all signers and the combiner
and is even allowed to generate all keys.
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User U Signer i ∈ 1, . . . , n

(m′, β) := T BS.Blind(m)
m′

(reliable broadcast)
σ′i := T BS.Sign(xi,m

′)

broadcast(σi)

...

Faults := {}
Σ′ := {}
while true do

σ′i := receive bc()

if ShareVer(Pi,m
′, σ′i) then

Σ′ := Σ′ ∪ {σ′i}
else

Faults := Faults ∪ {i}
endif

if |Σ′| = t then

break

endif

done

σ′ := T BS.Combine(Σ′, P )
σ′

(from any up to t signers)
// Try to find a honest signer/combiner return Faults

while true do

σ′ := receive()

σ := T BS.Unblind(σ′, β, P )

if T BS.Verify(P,m, σ) then

return σ

endif

done

Figure 2.10.: An example instantiation of our threshold blind signature protocol where user U acquires
a blind signature on message m. It assumes that T BS-BLS.Keygen was run previously
and the key material was distributed to the participants. The broadcasting of m′ to all
signers by U could be emulated by U sending m′ to t signers and them broadcasting m′

internally, which is more practical if there already exists a BFT consensus between signers,
but it does not include U .
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In fig. 2.10 we describe an exemplary protocol instantiation of a T BS scheme using
the reliable broadcast primitive introduced above. A user U acquires a blind signature
from the signers 1, . . . , n. The protocol for a threshold signature scheme T S would work
equivalently, just without the blinding/unblinding.

We choose this particular variant where the signers aggregate the signature shares
since it allows detection of uncooperative signers by the honest signers, something that
would otherwise be hard to prove or disprove in case of user complaints. Each signer
receives a set Faults at the end of a signing session containing any signers that submitted
faulty shares. This allows to detect misbehavior and also reduces the number of signers
U has to communicate with. In the worst case U needs to query t signers to receive the
valid signature for the requested message.

Note that ShareVer and Combine could also be executed by U , which would be more
efficient and preferable in some settings.

For the robustness property of the schemes to be useful in practice, the reliable
broadcast protocol needs to terminate.
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Boldyreva proposes a BLS, and thus pairing based, threshold signature scheme [3]
T S-BLS = (Keygen, Sign, ShareVer, Combine, Verify) (fig. 3.1). It uses Shamir secret

sharing (x1, . . . , xn)
t−→ x of the private key x ∈ Zq to allow every participant i to

create signature shares σi which can then be combined to a signature σ using Lagrange
polynomial interpolation. While their paper uses GJKR DKG for key generation we will use
a trusted dealer to describe the protocol and present the alternative DKG in appendix C.

From a participant i’s perspective Boldyreva’s scheme works as follows:

(x1, . . . , xn, P1, . . . , Pn, P )← Keygen(1λ, t, n): A secret sharing (x1, . . . , xn)
t−→ x is drawn

uniformly at random by a trusted dealer such that x ∈ Z∗q . The public key shares
are defined as Pi = xi · G2 for i ∈ {1, . . . , n} and the aggregate public key as
P = x ·G2.

σi ← Sign(xi,m): Every participant i computes a signature share σi = xi ·H1(m) and
reliably sends it to the combiner.

We assume that the participants agree on one message to sign per round externally,
for example through a reliable broadcast protocol. Equivocation would lead to a
forgeability attack described in appendix A.

{0, 1} ← ShareVer(Pi,m, σi): The combiner filters the received signature shares for
validity. Every valid signature share is a valid BLS signature with the secret key
share, and is thus verified against the corresponding public key share Pi as follows:
BLS.Verify(Pi,m, σi).

T S-BLS.Keygen(1λ, t, n)

(x1, . . . , xn
t−→ x)←$Zq[i]

P := x ·G2

Pi := xi ·G2 | i ∈ {1, . . . , n}
return (x1, . . . , xn, P1, . . . , Pn, P )

T S-BLS.Sign(xi,m)

σi = xi ·H1(m)

return σi

T S-BLS.ShareVer(Pi,m, σi)

return BLS.Verify(Pi,m, σi)

T S-BLS.Combine(Σ)

σ := Interpolate({(i, σi) | σi ∈ take(t,Σ)}, 0)

return σ

T S-BLS.Verify(P,m, σ)

return BLS.Verify(P,m, σ)

Figure 3.1.: Algorithms defining scheme T S-BLS.
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σ ← Combine(Σ): The combiner receives a set Σ of least t valid signature shares and
interpolates the aggregate signature σ = Interpolate({(i, σi) | σi ∈ Σt}, 0) from
it using a subset Σt ⊆ Σ of size t.

{0, 1} ← Verify(P,m, σ): The verification function is the same as for BLS signatures
with the aggregate public key P used as the public key.

Note that we assume the public key and public key shares to be valid, i.e. all are
elements of G2 and P = Interpolate({(1, P1), . . . , (n, Pn)}, 0), which we expect to be
ensured externally (e.g. on key exchange). The group check for σ, σi ∈ G1 already
happens in BLS and is not necessary here.

We claim that T S-BLS is a secure threshold signature scheme by arguing that it is
(t, n)-EUF-CMA secure and for t < n/2 also (t, n)-robust.

Unforgeability We prove that the scheme T S-BLS is unforgeable as defined in defini-
tion 7, meaning that no polynomial time adversary controlling up to t− 1 signers can
produce a valid signature with more than negligible probability.

Lemma 2. Assuming BLS is EUF-CMA secure, then T S-BLS is (t, n)-EUF-CMA
secure.

Proof of lemma 2. We prove the unforgeability of T S-BLS by showing that if a polyno-
mial time adversary A existed that can win (t, n)-EUF-CMAT S-BLS

A (1λ) with non-negligible
probability, EUF-CMA of BLS signatures would be broken.

For that we construct an algorithm B which can invoke A and wins the game
EUF-CMABLSB (1λ) if A wins (t, n)-EUF-CMAT S-BLS

A (1λ). B has access to a signature oracle
Osig which will BLS-sign any message with the private key corresponding to public key
P , which is given to B as an input.

To win EUF-CMABLSB (1λ) for a given public key P , B(1λ, P ) proceeds as follows:

1. Choose random private key shares x1, . . . , xt−1←$Zq that will be given to A later.

2. Calculate the public key shares P1, . . . , Pn to give to A such that they are consistent
with the previously generated private key shares and P .

Since the discrete logarithm of P is unknown to B so are the private key shares
xt, . . . , xn. Thus instead of simply multiplying these with G2, B must interpolate
Pt, . . . , Pn from the known shares P1, . . . , Pt−1 and P .

For that the adversary’s public key shares Pi = xi · G2 for i ∈ {1, . . . , t− 1} can be
easily calculated from the private key shares. To define the public key polynomial,
t shares are needed though. We recount that the shared secret, i.e. in this case
the aggregate public key P , is the evaluation of the secret sharing’s polynomial at
place x̂ = 0 (see section 2.5). Thus B uses the t points S = {(0, P ′), (1, P1), . . . , (t−
1, Pt−1)} that define the public key polynomial to interpolate the remaining public
key shares Pi = Interpolate(S, i) for i ∈ {t, . . . , n}.
The private key shares x1, . . . , xt−1, the public key shares P1, . . . , Pn and P are
then given to A.
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3. For every signing request for message m by the adversary A, B does the following:

• Query the signature oracle from EUF-CMABLSB for a signature σ := Osig(m).

• Calculate A’s t− 1 signature shares ΣA = {xi ·H1(m) | i ∈ {1, . . . , t− 1}}.
• Define the signature polynomial using the t points S = {(0, σ)}∪{(i, σi) | σi ∈

ΣA}.
• Interpolate the signature shares σi = Interpolate(S, i) for i ∈ {t, . . . , n} and

give them to A.

4. If A outputs a new message-signature pair (m,σ) for which no signing session was
started this means that B also made no request to Osig for that message. Since
the verification algorithm for threshold BLS signatures is the same as for BLS
signatures we can thus return (m,σ) as an existential forgery.

Let q′s be the number of signing queries made to Osig by B and qs the started signing
sessions by A as stated previously. The run time of B is tB = tA +O(qs). The number of
signing queries q′s to the BLS signing oracle is equal to the number of started signing
sessions qs. The probability of B succeeding is equal to the probability of A succeeding
as every valid output of A leads to a valid output of B and there is no condition under
which B has to abort.

Since BLS is assumed to be EUF-CMA secure, such an adversary B cannot exist.
T S-BLS has to be (t, n)-EUF-CMA secure.

We note that the above proof is subtly different from the one presented by Boldyreva
[3] as we found a minor mistake that we describe in appendix B.

Robustness We prove that the scheme T S-BLS is robust as defined in definition 8,
meaning that as long as less than t signers are malicious a valid signature will be produced.

Lemma 3. Assuming BLS is a correct signature scheme, then T S-BLS is (t, n)-robust
for t < n/2.

Proof of lemma 3. The adversary A has control over the message m and t− 1 signature
shares σ1, . . . , σt−1. We argue that neither can be used to make the signing protocol fail
or produce an invalid signature.

The message m ∈ {0, 1}∗ is being hashed, there is no input to the hash function that
could make it fail. It can also only output valid elements in G1.

Signature shares are valid BLS signatures themselves with the respective key share.
ShareVer is used to filter out invalid signature shares by verifying them using BLS’s
verification algorithm BLS.Verify(Pi,m, σi). Any valid signature share will lie on the
same signature polynomial of degree t − 1, so there is no way for A to influence the
secret sharing using valid signature shares and Combine will succeed and output a valid
signature as long as it is supplied with at least t valid signature shares. Lastly, even if A
contributes no valid signature shares, σ can still be interpolated by Combine as long as
t < n/2, which we assumed.
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This shows that even with up to t− 1 adversarial signers the protocol still produces
valid signatures and is thus robust.
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Scheme

Boldyreva [3] also proposes a blind signature scheme based on BLS and proves it OMF-
CMA secure. It is a very elegant scheme whose signatures are indistinguishable from BLS
signatures. We use this idea in combination with their threshold scheme to build a thresh-
old blind signature scheme T BS-BLS = (Keygen, Blind, Sign, Combine, Blind, Verify)
(fig. 4.1). We denote the requester of the blind signature as user U and the signers by
their index i.

(x1, . . . , xn, P1, . . . , Pn, P )← T BS-BLS.Keygen: A trusted dealer draws a secret sharing

(x1, . . . , xn)
t−→ x uniformly at random such that x ∈ Z∗q . The secret shares

x1, . . . , xn are the signers’ private key shares. From these the public key shares
Pi = xi ·G2 for i ∈ {1, . . . , n} are calculated. The aggregate public key is P ′ = x ·Zq
For unblinding we also need P̂ ∈ G1 as the isomorphic element to P ′ such that
P̂ = ϕ(P ′). It is calculated as P̂ = x ·G1.

The algorithm returns x1, . . . , xn, P1, . . . , Pn and P = (P ′, P̂ ).

(m′, β)← Blind(m): The user U draws a random blinding key β←$Zq and calculates
the blinded message m′ = H1(m) + β ·G1.

σi ← Sign(xi,m
′): Every signer i generates a signature share σi = xi ·m′. σi is then

reliably sent to the combiner, which may be U or any subset of at least t signers.

The blinded message m′ is an untrusted input. The signer needs to check that it is
an element of G1 and returns ⊥ otherwise.

{0, 1} ← ShareVer(Pi,m
′, σ′i): The combiner filters the received signature shares for

validity using ShareVer. Every valid signature share is an element of G1 and forms
a coDH tuple with the blind message and the public key share, which ShareVer

checks by calculating σi ∈ G1 ∧ e(m′, Pi) = e(σ′i, G2). The algorithm also returns 0
if the blinded message is invalid because m′ 6∈ G1.

σ′ ← Combine(Σ′): The valid shares are used by the combiner to interpolate the blind
signature σ′ = Interpolate({(i, σ′i) | σ′i ∈ Σ′t}, 0) from a subset Σ′t ⊆ Σ′ of size t.
The blind signature is then given to U .

σ ← Unblind(σ′, β, P ): U unblinds the signature σ′ using the inverse of its blinding key
β and the blinding public key P̂ to receive the final signature σ = σ′ + (−β) · P̂ .
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T BS-BLS.Keygen(1λ, t, n)

(x1, . . . , xn
t−→ x)←$Zq[i]

Pi := xi ·G2 | i ∈ {1, . . . , n}
P ′ := x ·G2

P̂ := x ·G1

P := (P ′, P̂ )

return (x1, . . . , xn, P1, . . . , Pn, P )

T BS-BLS.Blind(m)

β←$Zq
m′ := H(m) + β ·G1

return (m′, β)

T BS-BLS.Sign(xi,m
′)

if m′ 6∈ G1 then

return ⊥
endif

σ′i = xi ·m′

return σ′i

T BS-BLS.ShareVer(Pi,m
′, σ′i)

return m′ ∈ G1 ∧ σ′i ∈ G1
∧ e(m′, Pi) = e(σ′i, G2)

T BS-BLS.Combine(Σ′)

σ′ := Interpolate({(i, σ′i) | σ′i ∈ take(t,Σ′)}, 0)

return σ′

T BS-BLS.Unblind(σ′, β, P )

if σ′ 6∈ G1 then

return ⊥
endif

(P ′, P̂ ) := P

σ := σ′ − β · P̂
return σ

T BS-BLS.Verify(P,m, σ)

(P ′, P̂ ) := P

return BLS.Verify(P ′,m, σ)

Figure 4.1.: Algorithms defining scheme T BS-BLS.

The blind signature σ′ is an untrusted input. The user U needs to check that
σ′ ∈ G1 and return ⊥ otherwise.

{0, 1} ← Verify(1λ, P,m, σ): The verification algorithm is exactly the same as for BLS
using the aggregated public key P ′.

Note that we assume the public key to be valid, i.e. P1, . . . , Pn, P
′ ∈ G2, P̂ ∈ G1,

P ′ = Interpolate({(1, P1), . . . , (n, Pn)}, 0) and P̂ = ϕ(P ′), which we expect to be
ensured externally (e.g. on key exchange).

We claim that T BS-BLS is a secure threshold blind signature scheme by arguing that
it is (t, n)-OMF-CMA secure, for t < n/2 also (t, n)-robust and unconditionally blind.

Unforgeability We prove that the scheme T BS-BLS is unforgeable as defined in defini-
tion 9, meaning that no polynomial time adversary controlling up to t− 1 signers can
produce more valid signatures than it starts signing sessions with more than negligible
probability.

Lemma 4. Let (G1,G2) be a group pair with an isomorphism ϕ : G2 → G1 and a
pairing e for which the OMcoCDH problem is assumed to be hard, then T BS-BLS is
(t, n)-OMF-CMA secure.
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Proof of lemma 4. We show that if there exists a polynomial time adversary A, that
can win (t, n)-OMF-CMAT BS-BLS

A (1λ) we can construct an adversary B that can win
OMcoCDH

ϕ
B(1λ).

In game OMcoCDH
ϕ
B(1λ) B is called with argument X, the constant group element with

which each outputted pair of group elements has to form a valid Diffie-Hellman tuple. B
also has access to a target oracle OT, a Diffie-Hellman oracle ODH and the isomorphism
oracle ϕ, which are used to construct the blind signature oracle Obsig (invocations counted
as qs) and the random oracle OH given to A.
B is implemented as follows:

1. Set the target aggregate public key to P ′ = X. Choose random private key shares
x1, . . . , xt−1←$Zq to give to A.

2. Calculate the public key shares making up the public key P to give to A such that
they are consistent with the previously generated private key shares and P ′.

Since the discrete logarithm of P ′ is unknown to B so are the private key shares
xt, . . . , xn. Thus instead of simply multiplying these with G2, B must interpolate
these from the other public key shares and P ′.

For that the adversary’s public key shares Pi = xi · G2 for i ∈ {1, . . . , t− 1} can be
easily calculated from the private key shares. To define the public key polynomial
t shares are needed though. We recount that the shared secret, i.e. in this case
the aggregate public key P ′, is the evaluation of the secret sharing’s polynomial at
place x̂ = 0 (see section 2.5). Thus B uses the t points S = {(0, P ′), (1, P1), . . . , (t−
1, Pt−1)} that define the public key polynomial to interpolate the remaining public
key shares Pi = Interpolate(S, i) for i ∈ {t, . . . , n}.
The blinding public key P̂ = ϕ(X) on G1, which is part of the public key, is
computed using the isomorphism oracle ϕ. The public key is set to P = (P ′, P̂ ).

3. Call AOsig,OH

sig (P, P1, . . . , Pn, x1, . . . , xt−1), simulating the two oracles as described
below.

4. If A wins, it outputs s = qs + 1 valid message-signature pairs (mi, σi). We know
that:

• for σi to be valid, (OH(mi), X, σi) has to be a valid DH-tuple,

• every group element returned by OH was returned by OT,

• qDH = qs due to the construction of Obsig(m′) and

• all message-signature pairs outputted by A being distinct is equivalent to all
messages being distinct since BLS signatures are unique (lemma 1).

That means that every message-signature pair (mi, σi) can be transformed into an
element (OH(mi), σ) = (Y, x · Y ) = (Y,Z) of B’s answer for game OMcoCDH

ϕ
B(1λ).

There is an edge case where two calls OH(m) produce the same output for different
values of m. If this is the case for any two messages returned by A, B aborts and
raises the event collision.
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If no collision happens all (Y,Z) tuples are distinct due to all messages and
transitively the hashes thereof being distinct. B outputs |DH | = s = qs + 1 > qDH

valid and distinct tuples, winning OMcoCDH
ϕ
B(1λ).

The oracles given to A are implemented as follows:

ΣG ← Obsig(m′): The oracle has access to the adversary’s private key shares x1, . . . , xt−1,
which allows to calculate the t−1 blind signature shares σ′i = T BS-BLS.Sign(xi,m

′)
for i ∈ {1, . . . , t− 1} of A.

Furthermore it requests the aggregated blind signature σ′ = ODH(m′) from the
coDH oracle. σ′ is the value of the secret sharing’s polynomial at place x̂ = 0 as
discussed in section 2.5.

These t points S = {(0, σ′), (1, σ′1), . . . , (t − 1, σ′t−1)} are used to interpolate the
remaining blind signature shares σ′i = Interpolate(S, i) for i ∈ {t, . . . , n}.
The honest participants’ blind signature shares σ′t, . . . , σ

′
n are then returned to A.

H ← OH(m): The oracle keeps a table T of previously queried messages. If T contains
an entry for m, return the associated group element H. Otherwise query OT(),
which returns a random H ∈ G1. Save (m,H) to T and return H.

There is one case in which B does not win although A won: when there is a collision
in OH, which is equivalent to OT randomly choosing the same group element twice.
The probability of this happening P [collision] = P [∃(m1, H1), (m2, H2) ∈ T : m1 6=
m2 ∧H1 = H2] shrinks with increasing group size |G|, which in turn grows exponentially
with a growing security parameter λ. This means P [collision] is negligible and B wins
with a negligibly lower probability than A. Note that P [collision] ≈ 1− e−n2/(2d) since
it is equivalent to the birthday problem.

The run time of B can be quantified as tB = tA +O(qs) +O(qh), with qh being the
invocations of OH. Both oracles run for polynomial time.

Since we assume OMcoCDH to be hard for the pairing we use to construct the scheme
and B would break that assumption, this means that T BS-BLS is (t, n)-OMF-CMA
secure.

Robustness We prove that the scheme T BS-BLS is robust as defined in definition 10,
meaning that as long as less than t signers are malicious a valid signature will be produced.

Lemma 5. Let (G1,G2) be a group pair with a pairing e and let t < n/2, then T BS-BLS
is (t, n)-robust.

Proof of lemma 5. We argue that no adversary A can win the robustness game in fig. 2.8.
First the challenger gives the adversary t− 1 keys and lets it choose a message m to be

blind signed. Due to m being hashed to G1 on blinding and the algorithm Blind being
infallible there is nothing the adversary can do to make this step fail.

Next, the adversary is allowed to contribute up to t − 1 signatures. The challenger
ensures that only signatures belonging to one of the adversary-controlled keys are
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contributed. Every blind signature share is also checked for validity using ShareVer.
Every valid share is guaranteed to lie on the same blind signature polynomial and any t
blind signature shares may be used to interpolate the aggregate blind signature σ′. The
set of A’s signatures that were valid is called Σval

A .
The challenger now calculates the set Σ′C of the remaining n− t+ 1 blind signature

shares using its own keys.
The union of both distinct sets is used to interpolate the blind signature σ′. Note that

even without any valid contributions from A the challenger has |Σ′C | = n− t+ 1 of its
own shares to interpolate σ′, which for t < n/2 is sufficient. Even if A contributed valid
shares, these lie on the same polynomial as the challenger’s ones and will thus lead to
the same valid σ′.

Finally any valid σ′ can always be unblinded and will result in a valid signature σ for
m. Thus Verify will return 1 and A will loose, making the signature scheme T BS-BLS
robust.

Blindness We prove that the scheme T BS-BLS is unconditionally blind as defined in
definition 11.

Lemma 6. T BS-BLS is unconditionally blind.

Proof of lemma 6. We claim that there exists no adversary that is able to distinguish
two signing sessions when being handed the results of these. This means that nothing
can be learned about (m,σ) from observing (m′, σ′) and in reverse. This is formalized in
game BlindnessT BSA (1λ).

To prove that no adversary A can win BlindnessT BSA (1λ) we use a sequence of games
shown in fig. 4.2 between which A’s probability of winning (i.e. the game returning 1)
does not change.

Game1(λ): This game is equivalent to BlindnessT BSA (1λ) with the algorithms expanded.
Note though that the check for public key validity required by T BS-BLS.Verify
only happes once (line 13) instead of twice since both checks would have the same
result.

Game2(λ): In the first hop we replace the unblinding step in line 9 and 10. Since our
scheme produces BLS signatures and these are unique (lemma 1) the challenger can
also just calculate them directly as σi = logG2

(P ′) ·H1(mi) for i ∈ {0, 1} instead
of relying on A’s blind signatures1. This could be detected by the adversary by
outputting a wrong blind signature, but this would not change its probability of
winning since wrong signatures make A lose the game.

Since the challenger now does not have the unblinded version of A’s blind signature
shares anymore, the validation of σ′0 and σ′1 in lines 11 and 12 is also adapted. The
uniqueness of BLS signatures translates to uniqueness of the blind signatures. Thus

1Note that we in the realm of information theoretical security and thus able to calculate the discrete
logarithm of A’s public key.
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Game1(λ)

1 : ((P ′, P̂ ),m0,m1) := A1(1λ)

2 : // Blind messages

3 : β0, β1←$Zq
4 : m′0 := H1(m0) + β0 · G1
5 : m′1 := H1(m1) + β1 · G1

6 : // Run blind signing protocol

7 : b←$ {0, 1}
8 : (σ′b, σ

′
1−b) := A2(m′b,m

′
1−b)

9 : σ0 := σ′0 − β0 · P̂
10 : σ1 := σ′1 − β1 · P̂
11 : v0 := BLS.Verify(P ′,m0, σ0)

12 : v1 := BLS.Verify(P ′,m1, σ1)

13 : v2 := (e(P̂ , G2) = e(G1, P
′))

14 : // Guess message sign order

15 : return v0 ∧ v1 ∧ v2 ∧ (b = A3(σ0, σ1))

Game2(λ)

((P ′, P̂ ),m0,m1) := A1(1λ)

// Blind messages

β0, β1←$Zq
m′0 := H1(m0) + β0 · G1
m′1 := H1(m1) + β1 · G1

// Run blind signing protocol

b←$ {0, 1}
(σ′b, σ

′
1−b) := A2(m′b,m

′
1−b)

σ0 := logG2
(P ′) ·H1(m0)

σ1 := logG2
(P ′) ·H1(m1)

v0 := (σ′0 = logG2
(P ′) ·m′0)

v1 := (σ′1 = logG2
(P ′) ·m′1)

v2 := (e(P̂ , G2) = e(G1, P
′))

// Guess message sign order

return v0 ∧ v1 ∧ v2 ∧ (b = A3(σ0, σ1))

Game3(λ)

1 : ((P ′, P̂ ),m0,m1) := A1(1λ)

2 :

3 : // Draw random ”blind message”

4 : m′0←$G1
5 : m′1←$G1

6 : // Run blind signing protocol

7 : b←$ {0, 1}
8 : (σ′b, σ

′
1−b) := A2(m′b,m

′
1−b)

9 : σ0 := logG2
(P ′) ·H1(m0)

10 : σ1 := logG2
(P ′) ·H1(m1)

11 : v0 := (σ′0 = logG2
(P ′) ·m′0)

12 : v1 := (σ′1 = logG2
(P ′) ·m′1)

13 : v2 := (e(P̂ , G2) = e(G1, P
′))

14 : // Guess message sign order

15 : return v0 ∧ v1 ∧ v2 ∧ (b = A3(σ0, σ1))

Game4(λ)

((P ′, P̂ ),m0,m1) := A1(1λ)

// Draw random ”blind message”

m′0←$G1
m′1←$G1

// Run blind signing protocol

b←$ {0, 1}
(σ′0, σ

′
1) := A2(m′0,m

′
1)

σ0 := logG2
(P ′) ·H1(m0)

σ1 := logG2
(P ′) ·H1(m1)

v0 := (σ′0 = logG2
(P ′) ·m′0)

v1 := (σ′1 = logG2
(P ′) ·m′1)

v2 := (e(P̂ , G2) = e(G1, P
′))

// Guess message sign order

return v0 ∧ v1 ∧ v2 ∧ (b = A3(σ0, σ1))

Figure 4.2.: Game hop showing that T BS-BLS is perfectly blind. A = (A1,A2,A3) is a stateful
adversary where A1 chooses a public key and two messages m0,m1, A2 produces two blind
signatures for two supplied blinded messages and A3 tries to guess in which order messages
were supplied to A2. Game1 is equivalent to BlindnessT BS-BLSA .
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4. A BLS Threshold Blind Signature Scheme

the expected blind signature is calculated and compared to the blind signature
returned by A.

Game3(λ): Now that the blinding keys β0 and β1 are only used for blinding and not for
unblinding anymore it is easy to see that βi ·G1 with a uniformly drawn βi←$Zq
has the same uniform probability distribution as uniformly drawing an element from
G1. Since G1 is a cyclic group we also know that the sum of the message element
and a uniformly random group element is indistinguishable from a random group
element [19]. Thus we replace the blinding of the actual message with the drawing
of a random group element in lines 4 and 5 without A’s advantage changing.

Game4(λ): Finally we notice that the two random elements m′0 and m′1 can be given to
A in any order since they were drawn randomly in the first place and thus A’s
advantage does not change.

It is easy to see that b is not used in any calculations in Game4 anymore and A can
thus not learn anything about it. This leaves A with a chance of 1/2 at most2 to win the
game by guessing. Thus our scheme is unconditionally blind.

2A could also lower its chance by outputting wrong blind signatures.
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5. Future Work

We introduced a new combination of existing BLS based signature schemes that together
form a threshold blind signature scheme. We proved said scheme unforgeable, robust
and blind under the OMcoCDH assumption in the random oracle model.

The scheme can be used to construct a federated version of chaumian e-cash. We
believe that a federated e-cash protocol could be both a scaling solution and privacy
improvement as a second layer on Bitcoin. As such we will work on constructing such a
protocol, with our T BS-BLS scheme being core part, next.
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A. Equivocation Attack on Threshold
Schemes

For every threshold scheme that is based on signature share generation by its participants
of which any t can be combined to a valid signature, and does not enforce that every
participant signs the same message through some external mechanism (as we assume
to be the case in our security model in section 2.6), there exists the following standard
forgery attack:

We assume t = 2 and n = 3, meaning any two participants’ signature shares can be
combined to a valid signature. The adversary, taking the role of the user requesting a
signature (e.g. in some e-cash scheme) is allowed to initiate two signing sessions:

Session 1: peer 1 is given m1 to sign, peer 2 is given m1 to sign and peer 3 is given m2

to sign. The shares from peer 1 and 2 are sufficient to build a valid signature.

Session 2: peer 1 is given m2 to sign, peer 2 is given m3 to sign and peer 3 is given
m3 to sign. Peer 3’s share from the previous round and peer 1’s share from this
round create one valid signature. Furthermore the shares from peer 2 and 3 create
another one.

We have now created three signatures in only two authorized signing sessions, which
breaks unforgeability.
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B. Flaw in Boldyreva’s Proof

We argue that Boldyreva’s proof in [3, Appendix A] makes an error in assuming that the
DKG simulator [20, Figure 3] can return n− t− 1 valid key shares for honest participants.
Instead we claim that no consistent or useful key shares can be returned for simulated
(i.e. “honest”) participants.

B.1. Simplified Protocol

First we describe the honest path of the protocol as it can already be used to illustrate
the flaw. Adding corner cases for dishonest participants would needlessly complicate
things for this argument. Please note that, to keep consistent with the rest of this paper,
we use additive group notation instead of multiplicative as in [20].

The scheme uses two secret sharing techniques to accomplish different goals as shown
in fig. B.1:

Shamir Secret Sharing: As a result of the protocol we want each participant i to be in
possession of a secret key share xi, that is part of a (t, n)-Shamir secret sharing

(x1, . . . , xn)
(t,n)−−−→ x and an aggregated public key y = x ·G.

Sum: But no participant should learn x or be able to control its value, that is why every

participant i contributes their own secret sharing (si,1, . . . , si,n)
(t,n)−−−→ zi (note that

every such secret sharing is just a function fi of degree t and that the key shares are
evaluations si,j = fi(j) thereof). The final secret sharing is defined as the sum of
all participant’s secret sharings, such that x =

∑
i zi and respectively xj =

∑
i si,j .

This way no party learns the whole secret x.

After this first protocol part (“Generating x”) every participant j should be in
possession of si,j for all i ∈ {1, . . . , n} from which they can generate their secret key
share xj =

∑
i si,j .

In the second part of the protocol (“Extracting y”) y = x · G is shared in a
verifiable manner. For this the secret sharing of zi every participant i created previously
is reused and represent as a polynomial fi(x) = ai,0 + ai,1 · x+ · · ·+ ai,t−1 · xt−1. Every
participant i calculates t commitments Ai,k = ai,k ·G for k ∈ {0, . . . , t− 1}. These are
broadcast and each peer j can verify a peer i’s commitment as follows:

si,j ·G =
t−1∑
k=0

Ai,k · jk (B.1)

35



B. Flaw in Boldyreva’s Proof

i
fi(j) fi(0) fi(1) fi(2) . . . fi(n)

1 z1
(t,n)←−−− s1,1 s1,2 . . . s1,n

2 z2
(t,n)←−−− s2,1 s2,2 . . . s2,n

...
...

...
...

. . .
...

n zn
(t,n)←−−− sn,1 sn,2 . . . sn,n

Σ
(sum of above

secret contributions) x
(t,n)←−−− x1 x2 . . . xn

Figure B.1.: Visualization of the two dimensions of the DKG’s secret sharing.

and by taking the discrete logarithm on both sides

si,j =
t−1∑
k=0

ai,k · jk (B.2)

si,j = fi(j) (B.3)

Since x =
∑

i zi and Ai,0 = ai,0 · G = zi · G, y can be easily extracted from these
commitments by summing up the Ai,0 values: y =

∑
iAi,0.

B.2. Simulator

The goal of the simulator is to convince an adversary A that controls the first1 at most t
participants that they are participating in a honest run of the protocol, while setting y
to a predetermined value y′ of which the discrete logarithm x′ is not known. To do so
the simulator runs participants t, . . . , n while A runs participants 1, . . . , t− 1.

The first part of the protocol happens just as described above (assuming A behaves
honestly). But for the second part the simulator needs to cheat: it wants to convince A
that the aggregate public key is y′, while in reality it is some other value y 6= y′ with a
probability negligibly less than 1. Note that due to the lack of knowledge of x′ = dlogG y

′

the simulator could not influence the protocol in a way that would result in y = y′.
So instead the simulator manipulates one of the “honest” participant’s (e.g. participant

n’s) commitments (An,0, . . . , An,k). Firstly A′n,0 is set such that y′ =
∑

iAi,0:

A′n,0 = y′ −
n−1∑
i=1

Ai,0 (B.4)

To be able to still satisfy eq. (B.1) (An,1, . . . , An,k) have to be also manipulated (λk,j
being the Lagrange coefficient for point j with the unbound variable k that can thus

1Gennaro et al. note that this can be assumed without loss of generality instead of any subset of at
most t participants being controlled by A.
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later be set to k ∈ {1, . . . , t− 1}):

A′n,k = λk,0 ·A′n,0 +
t−1∑
j=1

sn,j · λk,j ·G (B.5)

This means the simulator interpolates the t (participant, public key share)-points: t− 1
adversary controlled evaluations of fn that still need to fit to the commitments plus A′n,0
to define the public key y′ to commit to. The resulting function could be written as:

F ∗n(x) = A′n,0 +A′n,1 · x+ · · ·+A′n,t−1 · xt−1 (B.6)

The unknown (due to not knowing x′) polynomial f∗n defining the secret sharing belonging
to this commitment polynomial F ∗n would be the following, with a′n,k = dlogGA

′
n,k:

f∗n(x) = a′n,0 + a′n,1 · x+ · · ·+ a′n,t−1 · xt−1 (B.7)

We note that y 6= y′ ⇒ An,0 6= A′n,0 ⇒ fn 6= f∗n. To be more precise, we know that due
to using sn,j ·G for j ∈ {1, . . . , t} to interpolate F ∗n , ∀j ∈ {1, . . . , t− 1} : fn(j) = f∗n(j)
and ∀j ∈ {t, n} : fn(j) 6= f∗n(j). This means that the commitments (A′n,0, . . . , A

′
n,k) do

not fit to the previously shared secrets (xt, . . . , xn) anymore. These are now defined as
x′j =

∑n−1
i=1 si,j + f∗n(j) for j ∈ {t, . . . , n}. But since the simulator does not know f∗n(j)

for j ∈ {t+ 1, . . . , n} it lost its key shares by sharing a wrong public key. Any attempt
at using the old shares (xt, . . . , xn) could be detected by A and make the simulation fail.

B.3. Proof Flaw and Fix

The proof mistakes only needing to manipulate one honest participant’s commitments
for only one honest participant’s key being invalidated. But this ignores that the other
“honest participants” are complicit by not complaining about the wrong commitments.
We have shown that instead all simulator-controlled keys are invalidated and cannot be
used to create e.g. signature shares that still lie on the same polynomial anymore.

This can be easily fixed. Instead of calculating σj for j ∈ {t, . . . , n − 1} using the
private key shares from the DKG simulation and only interpolating σn, each σj for
j ∈ {t, . . . , n} has to be calculated such that together with the signature shares that A
can generate, it would interpolate to the same signature σ provided by Osig. This can
be done by interpolating the appropriate signature polynomial and evaluating it at the
places j ∈ {t, . . . , n}:

σj = λj,0 · σ +
t−1∑
i=1

λj,i · xi ·H1(m) (B.8)

The above equation shows the interpolation of the signature polynomial using A’s
signature shares and the aggregated signature. j is an unbound variable and to be set to
j ∈ {t, . . . , n}.
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C. Secure Distributed Key Generation

The naive approach to generate a secret sharing is using a trusted dealer, that in the
case of Shamir’s scheme would randomly choose f . But clearly this is not suitable for
settings where no such trusted third party exists. Distributed Key Generation (DKG)
protocols allow to generate a secret sharings of a value unknown to any single of the n
participant as long as sufficiently many of these are honest.

Gennaro et al. [20] describe a DKG scheme based on Shamir secret sharing. It
differentiates itself from previous schemes in that it prevents attackers from biasing the
generated secret as it proves is possible with Pedersen’s scheme [21]. A high level overview
is given in appendix B.1. Figure C.1 describes the protocol under the assumption that
G and H are two generators of group G with order q for which the discrete logarithm
problem is hard. Note that ReconstructSecret is left out for brevity, it reconstructs
the secret of a compromised party in public. See [20] for details.

It is easy to see that the DKG can be used for Boldyreva’s T S-BLS scheme by setting
G = G2. For our T BS-BLS scheme we need to make an addition to PedersenVSS since
we also need to share P̂ , the isomorphism to the public key on group G1. This is easily
done by requiring every peer j to also broadcast the isomorphism of Aj,0, we call it
Âj,0 = aj , 0 ·G1. This allows to calculate P̂ =

∑
j∈QUAL Âj,0.
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GJKR DKG (1λ, t, n)

f ←$Zq[X] such that f(x) = a0 + a1 · x+ · · ·+ at · xt

f ′←$Zq[X] such that f ′(x) = b0 + b1 · x+ · · ·+ bt · xt

CommitToSecret(f, f ′)

SendContribution(f, f ′)

// Receive commitments

(C,Faults1) := receive bc()

ReceiveAndVerifyContributions(f, f ′, C)

Faults2 := ProcessComplaints(f, f ′, C)

// Build honest participant list and calculate xi

QUAL := {1, . . . , n} \ (Faults1 ∪ Faults2)

xi :=
∑
j∈QUAL sj,i

// Run Pedersen VSS to extract xG

(P,P) := PedersenVSS(f)

return (xi, P,P)

ReceiveAndVerifyContributions(f, f ′, C)

S := receive()

for j ∈ {1, . . . , n} do

if (sj,i, s
′
j,i) 6∈ S ∨

sj,iG+ s′j,iH 6=
∑
k∈{0,...,t−1} i

k · Cj,k then

broadcast(complaint against j: (i, j))

fi

done

CommitToSecret(f, f ′)

Ci := (a0G+ b0H, . . . , at−1G+ bt−1H)

broadcast(Ci)

SendContribution(f, f ′)

for j ∈ {1, . . . , n} do

(si,j , s
′
i,j) := (f(j), f ′(j))

send(j, (si,j , s
′
i,j))

done

PedersenVSS(f)

Ai := (ai,0G, . . . , ai,tG)

broadcast(Ai)

A := receive bc()

for Aj ∈ A do

if sj,i ·G 6=
∑t−1
k=0 i

k ·Aj,k then

broadcast(complaint sj,i)

fi

done Complaints := receive bc()

for sj,i ∈ Complaints do

sj,0 := ReconstructSecret(sj,i)

Aj,0 := sj,0 ·G
done

P :=
∑
j∈QUALAj,0

P := {Aj,0 | j ∈ QUAL}
return (P,P)

ProcessComplaints(f, f ′, C)

(Complaints, PFaults) := receive bc()

CFaults := {j ∈ {1, . . . , n} | t− 1 < |{(k, j′) ∈ Complaints | j′ = j}|}
for (j, i′) ∈ Complaints if i′ = i do

(si,j , s
′
i,j) := (f(j), f ′(j))

broadcast((si,j , s
′
i,j))

done

// Receive complaint replies

CR = receive bc()

RFaults := {(sj,j′ , s′j,j′) ∈ CR | sj,j′G+ s′j,j′H 6=
∑
k∈{0,...,t−1} j

′k · Cj,k}

return RFaults ∪ CFaults ∪ PFaults

Figure C.1.: Gennaro et al.’s [20] DKG protocol.
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